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Two-dimensional sink flow of a stratified 
fluid contained in a duct 
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(Received 26 August 1971) 

A reservoir is assumed to be filled with water which has a linear variation of 
density with depth. The geometry of the boundaries is simplified to a parallel 
walled duct with the line sink at the centre of the fluid. The primary focus is on 
partitioning the flow into distinct flow regimes and predicting the withdrawal- 
layer thickness as a function of the distance from the sink; the predictions are 
verified experimentally. 

For fluids with a Schmidt number of order unity, the withdrawal layer is shown 
to be composed of distinct regions in each of which a definite force balance pre- 
vails. The outer flow, where inertia forces are neglected, changes from a parallel 
uniform flow upstream to a symmetric self-similar withdrawal layer near the sink. 
For distances from the sink smaller than a critical distance, dependent on the 
flow parameters, inertia forces become of equal importance to buoyancy and 
viscous forces. The equations valid in this inner region are derived. Using the 
inner limit of the outer flow as the upstream boundary condition, these inner 
equations are solved approximately for the withdrawal-layer thickness by an 
integral method. The inner and outer variations of 6, the withdrawal-layer 
thickness, are combined to yield a composite solution and it is seen that the 
inclusion of inertia forces yields layers thicker than those obtained from a strict 
buoyancy-viscous force balance. In  terms of the inner variables the only 
parameter remaining is the Schmidt number. 

Laboratory experiments were carried out to verify the theoretical conclusions. 
The observed withdrawal-layer thicknesses were shown to be closely predicted 
by the integral solution. Furthermore, the data could be represented in terms of 
the inner variables by a single curve dependent only on the Schmidt number. 

1. Introduction 
In  spring and summer the impounded water of a storage reservoir usually 

becomes stratified. A simplification often made in heat budget models of such 
reservoirs is to assume that this density gradient prohibits all vertical motion, 
and that water withdrawn comes from a very thin horizontal layer at the intake 
level. The purpose of this paper is to investigate both the detailed structure and 
the thickness of a withdrawal-layer originating from a line sink. Such layers have 
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been investigated before, but with restrictive assumptions. It is instructive to 
recapitulate these solutions to see why they are unsatisfactory models of the 
withdrawal-layer phenomena in a large reservoir. 

Yih (1965) assumed that the viscosity and the diffusivity of the fluid were 
zero. This leads to the EuIer equations for a stratified fluid which, if one makes 
the assumption that upstream the density varies linearly with depth and that 
the product of the density and the velocity head is a constant, reduces to the 
Helmholtz equation for the stream function. For the boundary geometry shown 
in figure 1 this equation may be solved by standard methods and the solution is 
dependent on the magnitude of Proude number F = Uk/(ged2)3. Uk is the modi- 
fied upstream velocity and is equal to (p/po)4Ua, where p is the density, po the 
mean density and U, the upstream velocity. The term (ge)i is the Brunt-Vaisala 
frequency. For F > l/n the solution is characterized by a nearly uniform flow 
towards the sink and an eddy in the upper corner. As the Froude number is 
decreased this eddy elongates, extending further upstream until at  F = l/n the 
eddy streamlines close at  infinity. Such flows violate the assumed upstream 
boundary condition, but the solution does indicate that a withdrawal layer forms 
as the Froude number is decreased. 

In  order to circumvent the difficulties associated with the eddy extending to 
infinity ( F  c 1/n-), Kao (1965, 1970) introduced a slip line within the flow field, 
thus separating the flowing fluid from a stagnant upper layer. The results of 
Kao's work, especially the later paper, suggest that the Froude number, based on 
the flowing depth, remains constant and equal to l/n independently of the 
discharge q and that the thickness of the layer is of the order of F4. 

However, there remains the question of what role viscosity plays in such a 
layer. Kao (1970) showed that the velocity of the fluid moving along the inside 
of the slip line was constant and of order $(eg)*, where q is the sink discharge. 
This means that viscosity will cause a thin sublayer to grow around the upper 
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and lower slip lines in the upstream direction. Hence, at some point upstream the 
two sublayers will meet and viscosity will be important throughout the whole 
depth of the original withdrawal layer. The natural upstream boundary condition 
for the inviscid problem is therefore obtained by solving some, as yet undeter- 
mined, viscous problem upstream and matching the two solutions. This could, in 
turn, lead to an inviscid solution quite different to that found by Kao (1970). 

In  the experiments of Debler (1959) the upstream boundary condition was not 
allowed to  develop naturally but was forced to be of the form pUZ, = constant. 
Hence, although the experiments were an excellent check on Kao’s (1970) 
solution, they do not throw any light on whether the slip-line solution with 
pU: = constant is the correct limiting solution close to the sink for a long 
withdrawal layer. 

Koh (1966) investigated sink flow in a linearly stratified diffusive fluid of 
infinite extent. He neglected the inertia forces and made the usual boundary- 
layer-type simplifications. The flow was found to be self-similar and the solution 
exhibited a horizontally layered flow towards the sink. The thickness of the 
central layer, 6, was of order (vD/eg)Q, where v is the coefficient of viscosity and 
D is the coefficient of salt or heat diffusion. The flow was forced to conserve 
volume flux through a vertical section, but, as is shown in the appendix to this 
paper, the momentum flux is not conserved. The reason why his results agree 
quite well with his experimental findings will become evident in the next section, 
where the overall structure of the layer is examined. 

This paper considers the selective withdrawal from a very long reservoir with 
a depth sufficiently great for the induced velocities far from the sink to be small. 
The above known solutions are therefore in some sense either near-field or far- 
field solutions, but they do not match each other, nor does the far-field solution 
satisfy constancy of momentum flux. The following analysis examines the overall 
structure of such a layer with proper matching of the different regions in the limit 
of small Froude and Rayleigh numbers and large Reynolds number. 

2. Structure of the withdrawal layer 
The Boussinesq assumption is valid when eL < 1, where L is a typical vertical 

scale of the motion. It will become clear from later details of this analysis that 
inertia is only important close to the sink, where the thickness of the layer will 
be shown to be of order q*/(ge)). Obviously, variations of the inertia force are only 
important when the mean inertia force is non-negligible, so that the Boussinesq 
approximation is valid provided that q*d/g$ < 1. For typical reservoir operation 
this is of O(10-4). 

Consider the geometry shown in figure 1. The introduction of horizontal 
boundaries has two advantages. Pirst, it yields a more realistic geometrical 
representation of a real reservoir. Second, it admits a solution, valid far from 
the sink, which conserves momentum flux. The type of walls which fulfill these 
requirements are ones which are stress free and along which p is constant. More 
complex boundary conditions could be treated in a similar way but boundary 
layers at a no-slip wall would further complicate the analysis. 
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Under the above assumptions the equations of motion become 

v.u = 0, ( 1 )  
p,u.Vu+Vp = -pgfc+pv2u, ( 2 )  

U.VP-C~OW = DV2p. (3) 

7(x, + I )  = 0, p(x, + I )  = 0, (a), (5) 
(61, (7))  (8) 

The boundary conditions to be applied are 

u(a,  x )  = - q/2k w(x, 2 I) = 0, ,407 4 = - q@4, 
where D is the diffusion coefficient, T is the wall shear stress, u and w are the hori- 
zontal and vertical fluid velocities and d(z) is the Dirac delta function. The density 
has been separated into po +pe(z) +p(x, x ) ,  where po is the mean density, pe(z)  the 
ambient variation and p(x, x )  the motion-induced density change. The quantity E 

is here defined by - ( l / p o )  dp,/dz and p is the pressure minus the ambient equi- 
librium pressure. Finally, the Boussinesq assumption implies that the flow will 
be symmetric about the line z = 0. 

2.1. Outer flow 
It is assumed that the reservoir depth is sufficiently great so that at large distances 
from the sink the flow will be very slow and its development into a layered struc- 
ture will not be influenced by inertia forces. In  such cases the fluid will undergo 
three distinct flow transitions as it moves towards the sink. Very far upstream the 
imposed slip walls cause the flow to  be uniform. This slow flow then becomes 
layered by the action of buoyancy. As this layer approaches the sink it becomes 
thinner, and at  some critical distance from the sink inertia forces become com- 
parable to the buoyancy forces. The subsequent flow in the layer will be governed 
by a balance of inertia, buoyancy and viscous forces. 

The correct scaling of the vertical co-ordinate in the outer region, the inertia- 
free flow, would be a stretching by R*, where R, equal to (vD/sgZ4)4, is the Rayleigh 
number. However, this would also affect the wall spacing, which in turn would 
interfere with the far-field uniform flow. A more convenient scaling of the problem 
is obtained by shrinking the horizontal co-ordinate by an amount R. However, 
in doing this it must be remembered that for the purposes of matching with the 
inner flow the true outer co-ordinates are still z/lR* and x/Z, and not x and Rx. Let 

X = xR/l, Z = 211, P = p/poq(Eg)i, A = p / . F ~ p ~ l  
and the scaled stream function Y = $/q, where 1 is the duct half depth. This 
scaling of the pressure and the density is dictated by the desire to have the 
pressure forces of the same magnitude as the buoyancy forces, and for the non- 
linear terms in the momentum equation (2) to be of the same order as those in 
the diffusion equation ( 3 ) .  

In terms of these new variables (1)-(3) become 

F ( Y Z ~ Z X  - Y X Y Z Z )  + px = GY,Z + R 2 G ~ z x x ,  

P ( ~ z A x  -YXAZ)  + yx = (l/G)Azz + (l/Cr-) R2Axx, 

(9) 

( 1 1 )  

R2T( - Y z Y x x  + Y x Y x z )  + Pz = - A - R2G",zz - R ' G Y X X X ,  (10) 

where F = q(gs)-tZ-2, R = (vD/Eg)*Z-2 and cr' = (v/D)4. 
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X = (x/Z) R 
FIGURE 2. Outer solution. 

The outer region equations are obtained by putting R = 0 and P = 0. These 
may then be combined to yield the equation for creeping flow obtained by 
Koh (1966) : 

a6Y/a26+PY/aX2 = 0, - 1 ,< z < 1, 0 < x ,< Go, (12) 

with the boundary conditions 
Y(X, 51) = T * ,  

a 2 y  a 4 ~  
- ( X ,  * 1) = 0, - (X, * 1) = 0 822 a 2 4  

and Y ( 0 , Z )  = -&sgnZ. (16) 
Fourier analysis of (12) leads to the solution 

l r n  I 

The streamlines are shown in figure 2. Convergence of the series is very rapid 
everywhere except at the origin, where it diverges. 

To study the non-uniformity a t  the sink, it is necessary to know the limit of 
the above solution as X + 0 and 2-t 0. This may be obtained conveniently by 
noting that 
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where c is a real constant greater than zero. Substituting for e-nsnsXs in (17) and 
then expanding sinnZ in a power series yields the result 

In  the appendix it is shown that the infinite series in (18) can be written in the 
form 

and that this is the solution found numerically by Koh (1966) for the unbounded 
fluid domain. Therefore, as the motion approaches the sink the outer flow changes 
from a uniform channel flow into Koh's (1966) self-similar motion. 

2.2. Inner $ow 
The inner region occurs where the outer flow is sufficiently energetic for inertia 
to become important. It will be assumed that, just before this occurs, the flow 
will already have converged to a layer of thickness O(R*) and that the outer 
variables are really ( x / l ,  x/lR)). Using these variables instead of X and Z leads 
to equations similar to (9)-(11) except that the nonlinear terms in (9) and (11) 
are multiplied by FIR) instead of P. One method of computing the horizontal 
extent of the inner region is to expand the stream function in a power series 
of FIR%. An inspection of the second term of this series shows that the series 
diverges when x/Z becomes smaller than 

or equivalently when X becomes smaller than Ps. In  other words, for distances 
smaller than x, the influence of inertia is not merely a correction to the outer flow, 
but it is the prime force. If P/R% is not small then the flow will become layered 
after inertia has become important. In  contrast with the above, this wouldrequire 
keeping at least some representation of the inertia forces throughout the whole 
flow. 

x, = (P/R+)BZ, 

The correct inner variables are therefore 

= X/P3, 7 = ZIP+. ( W 7  (21) 
The outer solution Y(x/Z, x/ZR*) when rewritten in terms of the inner variables 
is Y ( ( P / R f ) j t ,  (B/R))*r). Now as Y/R%-+O, this becomes Y(<), where 5 = q/@, 
hence the inner stream function remains unscaled, a condition required if all the 
flow is to pass through the layer. Because A+ l /X%h([ )  as X +  0 and 2-t 0, 
A must be scaled such that IT = AP4. The equations in terms of these inner 

(22) 
variables are G 

YYlt -%%7+ pc = @%I, + Yl,, 

where Re = q/v. 
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In  the limit Re-+0o, (22)-(24) reduce to 

which constitute the required inner equations for the limit R -+ O,F+ 0, Re+ 00 

and FIR8 -> 0. Equations (25)-( 27) must now be solved with the solution (1  8) as 
the upstream boundary condition. 

It is interesting to note that (25)-(27) include the outer equations, and hence 
for those regions in which the wall influence is absent, the flow only depends on 
the parameter G. Any experimental flow at a given value of G is therefore self- 
similar with respect to the co-ordinates ([, 7). The experiments described in § 4 
verify this result very well (see figure 10). 

The reason why Re should be large for the above equations to be valid is 
perhaps best seen by examining the width-to-length ratio of the region of non- 
uniformity. The physical width 6 of the region is of order Pi1 and the physical 
length x, is of order S%/R. Hence 

6 F*R R 1 1  - = - - - -  
x, F4 - I r  

and thus 6/xc < 1 only if Re is large. When Re is small, (25)-(27) are nowhere 
valid and the flow near the sink is governed by the full Navier-Stokes equations. 

In  the next section equations (25)-(27) will be solved approximately by an 
integral method. For 6 = 00, the withdrawal-layer thickness 6 is matched to the 
inner limit of the outer solution. The boundary condition to be applied at [ = 0 
is obtained from an investigation of the flow near the sink. If the variable is 
stretched by R/P (i.e. for outer variable distances closer than O(F*)) the equations 
of motion to first order in l /Re reduce to the Boussinesq approximation of the 
Euler equations for a stratified fluid. The solution of these equations would 
naturally depend on the solution of (25)-(27) and vice versa. Neither set admits 
a similarity solution, nor do they appear to be tractable by other methods. It was 
pointed out in the introduction that for the very special upstream condition of 
uniform flow Kao (1970) has solved the Euler equations. Here a slip line is 
required at  the edge of the layer. Thevelocity along this slip line remains constant 
and of order q*(eg)i, which means that around this slip line there is a backward 
growing viscous-buoyancy layer of thickness O(R*). However, at  the moment it 
is a matter of speculation whether these two layers could be matched onto a 
solution of (25)-(27). The boundary condition of 6 = 0 is therefore somewhat 
uncertain, but the author believes that a realistic result may be obtained by 
using the condition, obtained by Kao (1970), that 6 is equal to Ft  a t  [ = 0. This 
is further justified in the discussion, and as long as the solution is not very sensi- 
tive to the exact numerical value of 6 at [ = 0, this procedure should lead to 
satisfactory results. 
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3. An integral solution estimate of S 

(25) and (27). In  terms of the velocities U and W these are 
The equations to be solved are obtained by eliminating the pressure P from 

(UV,+ WU,),-IIIg-GU,,, = 0, (28) 

UIIt+ Kn,- W -  (I/G) II,, = 0. (29) 

The boundary conditions are that II, U ,  W and their appropriate derivatives 
tend to zero as y -+ f co. The initial conditions are supplied at c = 00 by the outer 
solution. For the purposes of the integral method it is more convenient to replace 
the boundary condition W = 0 as y --f ? 00 by the integral condition 

U d y  = - 1. (30) Km 
Examination of the experimental data obtained by Koh (1966) shows that, for 

a particular discharge, the velocity profiles are nearly self-similar even in the 
inner region. In  5 4 this is confirmed in the more general co-ordinates ( 6 , ~ ) .  This 
suggests letting 

and obtaining f from the upstream flow. However, in that solution II = O( l /y )  
for large 7, which is non-integrable. To be able to apply an integral method the 
equations must therefore be premultiplied by a weighting function. This is more 
easily done iff is an algebraic expression. It is therefore convenient to let 

U ( t ,  7) = a ( E ) f ( r / W  (31) 

where k is a constant. By conservation of mass 

The value of the constant k is then chosen to yield the best fit to the similarity 
solution (18). The unknown functions are a(<), b ( ( )  and S(c). 

Equations (32)-(34) are now substituted into the following integral form of 
(28)-(29): 

U d y  = - 1. !Im 
The factor 1/(1 +y26-2) is included in (35) to  make II, integrable. Carrying out 
the integration yields two ordinary differential equations and one algebraic 
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equation for a, b and 6. The variables a and b may be eliminated from these 
equations, resulting in a single equation for 6: 

(a165-a26)~+(a164+3a2)6'2+a3~+aq = 0, (38) 

where a, = 

a2 = 

a, = 

and a4 = 

l-k 
3-k' 
128 1 2-k 6 k k2 
--- 3 ~ ~ ( 3 - k ) ~ ( ?  +---) 21 105 ' 

( 1 l k  + 32) G 64 1 (6 k k2 -- -+--- 
T ( 3 - k ) 2  7 21 105 

8 Ilk+32 
5 3 - k  * 

-- 

The boundary conditions are that 6 = 1 at 5 = 0 and that, as [-too, 
6 approaches the value of the solution of (38) with the inertia terms set to zero. 
The differential equation for 6, obtained by ignoring the inertia terms in (38)) is 

a1 656" + a1 6 4 f P  + a4 = 0. (39) 

Letting p = a2 gives 

which is the Emden-Fowler equation. Bellman (1953) has shown that all 
solutions to this equation are asymptotic to the solution 

P = K@, (41) 

where K,( 9a4/a,)4, so that 6 Kl@, (42) 

6 = K,[' + K2[+ + K3 t4 f K4E-l f K ,  [-' + ..., 

as required. To reduce the numerical integration, further terms of the asymptotic 
series were found, namely, 

where K ,  = (ga4/al)*, K ,  = 3a,/4a1K:, K ,  = arbitrary, 
(43) 

K4 = (2/3a,K:) { + c c ~ K ~ K ~  + iK2~t3-2K2,a2} 

and K ,  = (1/14K:K2) { ~ K , c Y , ~ - ~ ~ ~ , K ~ K , K , } .  
The similarity of the series (43) to that proposed by Koh (1966) should be 

noted. However, the above contains extra terms which are all dependent on the 
arbitrary constant K,. This free parameter is necessary as nothing has been said 
about the behaviour of the solution at [ = 0. Similarly, Koh's (1966) proposed 
series should have an equivalent arbitrary coefficient. 

The arbitrary constant K ,  was used to convert the boundary-value problem 
into an initial-value problem. In other words, K ,  was fixed, 6 and 6' were com- 
puted from the series (43) for a sufficiently large value of [ and (38) was integrated 
numerically to the origin. The constant K ,  was adjusted until 6 = 1 a t  [ = 0. 

Inspection of (38) shows that it has a singular point when 

6 = 6, = (a2/al)*. (44) 

The slope of 6 becomes infinite here and the assumption of a similar profile can 
no longer adequately describe the flow. The value of k was therefore chosen to 

22 F L M  53 
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FIGURE 3. Comparison of the integral velocity profile with the velocity profile obtained by 
Koh (1966). -, assumed integral profile; ---, Koh (1966). 
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FIUURE 5. Composite solution for salt stratification with G = 29.0. The position of the 
upper wall is a function of the Froude number because the inner vertical scale is Z/&. The 
x co-ordinate is non-dimensionalized with respect to the length of the inner region 
xc = (P)/R)l. Notice that the theory fails for values of > 11677 as inertia is t,hen no 
longer negligibly small far upstream. 

make 8, = 1 and K,  = 3.2, the value obtained from (18) for the present definition 
of 13. The actual value adopted for k was +, which yielded values K ,  and 8, of 3.15 
and 1.17 respectively. Figure 3 shows a comparison of the velocity profile given 
by the integral curve (32) with that from equation (18). 

The composite expansion S was obtained by adding the inner and outer 
solution and subtracting K,@, the part which is common to both. This is shown 
in figures 4 and 5 for both heat and salt stratification. Unfortunately the wall 
spacing in the outer problem does not scale with FB, so that the wall ‘moves’ 
with respect to an inner (&q)  co-ordinate system as F changes. However, the 
advantage of this co-ordinate system is that near the sink the solution depends 
on G only. It should be noted that this sole dependence of the flow on G will 
extend to flows for which G is larger than unity. The reason for this is that 
(25)-(27) contain a representation of the total process and therefore contain the 
equation representing flow with negligible species diffusion as a subset. 

Implicit throughout the above development is the fact that any inertia forces 
present become negligibly small far enough upstream. At large Froude numbers 
this limitation is violated and the composite layer may become thicker than the 
channel depth. For the case Pi = 1/6n this is illustrated in figure 5. 

4. Experimental verification 
The experimental results obtained by Koh (1966) are shown replotted in 

figure 6. The withdrawal-layer thickness has been reduced by 0.9 from that used 
by Koh (1966) in order to  correspond to the definition used in this paper. It is 

22-2 
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FIGURE 8. Withdrawal-layer thickness data after Koh (1986). The paramet,er G = 2.34 for 
heat-stratified water and G = 29.0 for salt-stratified water. ---, integral solution; 
-, non-inertial integral solution. 
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seen that the two cases, salt and heat stratification, fall into two separate regions 
on the graph. The relatively large scatter can probably be attributed to the rather 
small depth and short length of Koh’s (1966) experimental apparatus. It must be 
remembered that the theory was derived for the case when x, is small compared 
with both the depth and length. In  view of this, an experimental programme 
designed to repeat and extend Koh’s data was carried out in a facility much larger 
than that used by Koh (1966). All the experiments were conducted in a salt 
stratified solution to avoid the side-wall-induced convection boundary layers 
present in a thermally stratified tank. A perfectly still reservoir was essential 
since the velocities in the withdrawal layers are extremely small. 

4.1. Apparatus and techniques 
The experimental procedure was in principle very similar to that used by Koh 
(1966) and only a brief description will be given. The experiments were performed 
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Discharge 
slots 

FIGURE 7. General layout of experimental tank. 

in a 13 m long, 1 m deep, 45 cm wide tempered plate-glass tank. The tank is shown 
schematically in figure 7. Two trolleys were placed on rails on top of the tank; one 
served as a mounting platform for the stratifier while the other held the salinity 
probe and associated vacuum pump. The discharge facility was located at  one 
end. Mounting the salinity probe on the trolley allowed the same probe to be 
used to measure the density gradients throughout the channel and the salinity 
of the discharging water. 

The water was stratified by dissolving it in ordinary kiln-dried commercial salt. 
This proved to be pure enough as only the background density was measured; no 
attempt was made to measure the small fluctuations of salinity induced by the 
motion. The salinity was measured with a conductance probe connected to a 
paper chart recorder. The probe was calibrated with a set of reference solutions 
at the same temperature as the tank water. 

The linear density profile was established by a slight modification of the method 
described by Clark et al. (1967). The whole tank was filled with fresh water and 
a gated partition was introduced vertically into the centre of the tank, preventing 
any transfer of water from one side to the other. The appropriate amount of salt 
was then stirred into one half of the partitioned tank and the water was mixed 
by pumping from the bottom to the top. Once the mixture was uniform it was 
allowed to come to rest. The flaps of the partition were then opened very slightly 
to allow the salt water to flow beneath the fresh water and the fresh water to flow 
over the salt water. About half an hour elapsed before the whole tank had a 
two-layer stratification in it. The partition was then carefully removed. 

To obtain a linear profile, a series of three plates, mounted on the trolley, were 
then briskly moved through the interface with a crank and pulley arrangement 
at the end of the tank. The largest plate moved directly through the interface 
while the two smaller ones stirred up the top and bottom layers. The wakes behind 
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the plates created sufficient turbulence to allow mixing. The mixing smoothed 
out the interface, and after some adjustment of the position of the plates a very 
linear profile was obtained throughout the whole depth. 

To ensure constant monitoring of the discharge flowing out through the sink 
a float type discharge meter was installed. This provided a means of adjusting 
the flow rate to a desired value and also of checking its constancy as the experi- 
ment proceeded. However, the actual discharge used in the reduction of the data 
was obtained by integrating the velocity profiles. 

The velocities induced by the fluid withdrawal are of the order of a few centi- 
metres per minute. For such low velocities a suitable method of velocity measure- 
ment was to drop crystals of dye into the centre of the tank at  incremented 
distances from the sink. The purple streaks left in the wake of the falling crystals 
were then photographed repeatedly. 

Of the dyes available, it was found that potassium permanganate was the most 
suitable for the present experiment. In contrast to organic dyes, this has the great 
advantage that it forms very fine intense streaks, the lifetime of which are only 
about a quarter of an hour. Their rapid decay, which is due to oxidation, allows 
experiments to be repeated quite quickly. The crystals used were about $-i mm 
in diameter and care was taken to choose only the most spherical ones. The 
crystals were placed, after cutting, into a small recess in a wooden dowling at 
a spacing of about 10 em. This wooden bar was then placed on top of the tank. To 
introduce the crystals into the water the bar was inverted. 

The motion of the dye streaks was recorded photographically, the time 
between photographs being measured by simultaneously tripping the camera 
shutter and the event marker on the recorder. The negative images were enlarged 
to half scale on a plastic-base photographic paper allowing distances to be scaled 
off directly. 

4.2. Experimental results 
The no-slip condition on the side walls forced the layer to have a parabolic 
velocity variation across the width of the tank, rather than a uniform distribution 
as assumed in the theory. For this reason, the local discharge qm, obtained by 
integrating the velocity profile with a planimeter, was used in the reduction of 
the data. To obtain qm, successive photographs were aligned and the top profile 
was pricked through with a needle onto the other photograph. The area between 
the two curves of six roughly equally spaced profiles was then measured with 
a planimeter. The total net area was used rather than just the forward flowing 
part. To within 10 yo the areas were the same and the mean of the six areas was 
used to calculate the discharge. 

For the integral velocity profile, the velocity at  7 = 6 is & the centre-line 
velocity. This provides a convenient definition for 6 in the experimental data as 
that width at which the velocity has dropped to & the centre-line value. This 
value of 6 was also much better defined on the photographs than the point where 
the velocity is zero. The profile has a large non-zero slope here, and it formed 
a definite intersection with the line u = &urn,,. The values of 6, measured as 
described, and the above value of qm were then used to plot, as shown on figure 8, 
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FIGURE 8. Experimental withdrawal-layer thickness for salt strati6cation 
with G = 29.0. The parameter xo = (Pp/R)l.  
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Expt. 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 3-4 

Expt. 3-5 3-6 4-1 4-2 4-3 4-5 4-6 4-7 4-8 4-9 

8 / F i  0s. (x/x,)*, where x, = (q/v)3(vD/eg)t  and Fm = qm/(eg)*. The normalized 
velocity profiles at  four values of (x/xc) are shown in figure 9. The solid line again 
corresponds to the integral velocity distribution, which may be rewritten to have 
u/umax as the ordinate and zumaX/qm as the abscissa: 

Figures 8 and 9 show little scatter, indicating that random errors due to 
parallax, enlarging and aligning of photographs are quite small. Furthermore, as 
long as the scale in the vertical direction, 28, is smaller than the width, and pro- 
vided the local centre-line discharge qm is used, the error introduced owing to 
three-dimensionality will be small. In  the present experiments the ratio of thick- 
ness to width of the layer was kept to less than 0.1 by taking data only in the 
fist 2 m of the tank. Data from four different values of the density gradient and 
about five different discharges for eachvalue of E are represented on figures 8 and 9. 
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FIGURE 9. Experimental velocity profiles for salt stratification with G = 29.0. -, integral 
profile; 0,  (x/zc)* = 4.13; 0, (z/zc)* = 1.62; a, (z/zc)* = 0.67; 0, (x/xc)* = 0-20. 

The value of x, was varied from 2 cm to 2 m but for most of the data x, was less 
than 1 m. This ensured that the experiment adhered to the assumptions of the 
theory. The experimental programme is summarized in table 1. 

5. Discussion 
Theory showed that the flow should be independent of any parameter except CT, 

when the x and z co-ordinates are scaled correctly. This isverified in figure 8, where 
the data are seen all to fall onto one curve for a particular G. The above observa- 
tion is equally true for the salt stratification, where CTI is quite large, even though 
the theory was developed for G of order one. For the same reason a large value of 
G does not invalidate the integral-solution results. A comparison between the 
theory and experiment is shown in figure 8 and it can be considered good every- 
where except near the sink. The difficulty here results from the still unknown 
behaviour of the flow very near the sink. There is a temptation to adjust K,, the 
floating upstream constant, to improve the fit near the origin. Figure 10 shows 
curves for different values of K,  and it is seen that the integral curve for 
K ,  = - 82.2 fits the data better than the originally adopted curve, which has 
9, = - 81-8. This is an encouraging flexibility of the method, but the original 
choice of K ,  remains the only theoretically justifiable one until a more definite 
solution for the flow very close to the sink is obtained to which the integral 
solution may be matched. 

It was hoped that the velocity profile measurements would indicate some of 
the structure changes very close to the sink and clarify the nature of the inviscid 
core. Figure 9 shows, however, that even for x of the order of F i  the velocity 
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FIGURE 10. Variation of the integral solution with the constant K3. 
---, experimental value (line of best fit). 

profiles are self-similar to those for large x/xc. The only change is that the back- 
flow velocity decreases, in relation to the centre-line velocity, as x is decreased or, 
equivalently, as q is increased. Further work, both experimental and theoretical, 
is needed to describe the flow close to the sink. 

The rate of mass leaving the duct at the sink is, by symmetry, equal to 
(p,(O) +po)q, which in turn is equal to  mass flow rate at infinity 

In  other words, the withdrawal is not really selective at all, but rather is the 
result of a diffusion averaging process extending over the whole flow region. 

Tests conducted by the Tennessee Valley Authority on some of their reservoirs 
appear to be the only source of actual reservoir data. The work summarized in 
the T.V.A. reports (1969a Water Resources Res. Lab. Rep. no. 4, 1-8; 19693 Water 
Resources Res. Lab. Rep. no. 13, 1-30) is concerned with the measurement of the 
velocity, temperature and water oxygen content distribution in a reservoir from 
which water is being drained. These results are shown in figure 1 1 .  

The difficulty of measuring velocities is caused by the unsteady nature of the 
operating discharge and the irregular geometry of most reservoirs. Furthermore, 
the reservoir discharges were always very high and when combined with the 
molecular values of Y and D yielded values of xe ten to one hundred times larger 
than the length of the reservoirs. This means that the inertial region extends over 
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I u x = O ( P )  

Non-inertial integral solution 

1 I I 
0 0.05 0.10 0.15 0.20 

(XI%)* 

F I Q ~  11. Prototype experimental data from T.V.A. Water Resources Research Reports. 
--- , layer thickness in an inviscid 5uid; V, Fontma; 0, 0, 0, A, Cherokee. 

the whole reservoir. Consequently the outer solution is valid nowhere in the 
reservoir. Brooks & Koh (1969), in an effort to explain the difference between the 
observed withdrawal-layer thickness and that predicted by Koh (1966), postu- 
lated eddy transport coefficients much larger than their molecular counterparts. 
The use of Koh’s (1966) solution is now seen to be incorrect, but a similar pro- 
cedure can be used for the present theory. An increase in v and D decreases x, and 
this moves the data points to the right in figure 11. With the assumption that 
v = D,  a typical value of the eddy transport coefficient sufficient to move the 
data onto the theoretial curve is 10-1 cm2 s-l. This is an increase by a factor 
of 102 over the molecular values leading to transport coefficients compatible with 
the measurements of Orlob & Selna (1970). The value of x,, based on such 
transport coefficients, corresponds roughly to the length of the reservoir but is 
still much larger than the depth. 

The weakness of the above procedure is that, as yet, there is no explanation 
of a mechanism which could sustain these larger eddy transport coefficients. 
Measurements (T.V.A. 1969b) of the local Richardson number with depth, for 
a typical run, indicate that this varies between 10 and 10 000, values which are 
much too high for local shear instability. 

The large values of xc encountered in reservoirs with peak discharges also means 
that the end walls cannot be neglected and these could have first-order effects on 
the thickness of the layer; an end wall stops the withdrawal layer and much larger 
reverse flows are induced. A large discharge could thus cause a vigorous layer to 
extend to the rear wall and this would induce a reverse layer above and below 
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the centre layer. Schiff (1966), in a related problem, has found that this induced 
snaking of the flow with possible mixing at the boundaries leads to increased 
diffusion of the species. In the present problem this would increase G and thus 
increase the thickness of the layer. 

In  summary it can be said that the theory, although yielding good agreement 
with laboratory experiments, is still not able to explain completely prototype 
behaviour. However, it does yield a rational basis from which to proceed to 
include the effects of larger eddy transport coefficients and end-wall effects. 

This work is part of a Ph.D. thesis submitted to the University of California, 
Berkeley. The author would like to thank his advisor, Prof. H. B. Pischer, for his 
assistance and encouragement throughout and Prof. G. Corcos for the many hours 
of discussion extended to him. This work was undertaken while the author was 
a recipient for two years of a Gledden Fellowship award from the University of 
Western Australia. In  the third year the author held a Science Fellowship from 
the University of California. The experimental programme was supported by a 
grant from the Environmental Protection Agency under Contract no. 15040 EJZ. 

Appendix 

to be 

where Y, P and A are the scaled stream function, pressure and density, respec- 
tively. For convenience the parameter G has been set equal to one. The solution 
of this set of equations is now given for a domain extending in both the vertical 
and horizontal directions to infinity. 

The linearized equations governing the motion far from the sink were shown 

Px = ~ z z z ,  Pz = -A, yx = Azz, (A I ) ,  (A2), (A 3) 

!v =f(C), p = P(C), A = ( I /XQ)h(C) ,  @4), (A5), (@) 

g” = + g”(0) (A 7) 
(A 8) 

Let 

where < = Z/X*. After eliminating the pressure, (A 1)-(A 3) become 

h!’ = - “6 and 3 9, 

where g = f I .  The boundary conditions to be applied are 

jm g(<)& = - 1, 
-a3 

h , g , g ’ + O  as C-+-t.co 

and that y is an even function of 6. 

for g: 

A solution of (A 9) satisfying the above boundary conditions is given by 

Eliminating h from (A 7) and (A 8) leads to the following fifth-order equation 

g’ + @g‘ + $Cg = 0. (A 9) 

g(6) = ;Im e-@cosqCdq, 
n o  



Two-dimensional sink flow in a duct 349 

or alternatively 

A power-series representation o f f  is given by expanding the sine term and 
integrating term by term and yields 

It should be noted that the integral form of the x momentum equation must 
hold as well as the condition Y(w) - Y( - 00) = 1. In the present model the former 
simplifies to  

[" PdZ = J .  
J -m 

where J is a constant. Substituting for the pressure yields 

J = + X * S m  P(5)dc. 
-m 

Hence not only does J become unbounded, but also aJ/aX is not zero, and this 
type of pressure variation violates the integral statement of the simplified 
momentum equation. 
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